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TECHNICAL NOTE 

A Novel Technique for the Characterization of 
Asymmetric Membranes by Permoporometry 

A. M. VAIDYA" and N. J .  HASELBERGER 
DEPARTMENT OF CHEMICAL ENGINEERING 
UNIVERSITY OF STRATHCLYDE 
JAMES WEIR BUILDING, 75 MONTROSE ST. GLASGOW G1 IXJ, SCOTLAND 

ABSTRACT 

A modified technique for the characterization of membranes by liquid displace- 
ment permoporometry has been described. The modifications allow an estimate 
of the shape of a pore in an asymmetric membrane to be made. The erroneous 
nature of the conclusions that would be drawn if permoporometric data, obtained 
with a membrane with asymmetric pores, is treated under the assumption of right 
cylindricity has been demonstrated by means of such an analysis done on a hypo- 
thetical asymmetric membrane. While there is little error in the estimation of pore 
radii, the pore numbers are grossly overpredicted by a right cylindrical pore model 
for the membrane. The extent of this overprediction increases with the asymmetry 
of the membrane. 

INTRODUCTION 

Liquid displacement permoporometry (1) is a well-established tech- 
nique for the characterization of porous membranes. The technique, first 
used by Bechhold et al. (2), involves the displacement of a liquid wetting 
the pores in the membrane by another liquid, immiscible in the former. 
The two liquids are chosen so as to have a low interfacial tension (3). The 
experimental technique involves the measurement of the flux through the 
membrane at incremental pressures. This is quite difficult to do  since the 
fluxes are of the order of lop9 m3/s and the pressure increments required 
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2524 VAIDYAANDHASELBERGER 

are correspondingly small. Capanelli et al. (4) have outlined a simpler 
experimental technique. 

In all the published literature on the characterization of membranes 
using this technique, the flow through the pores from which the displace- 
ment of the liquid-liquid interface has already occurred is calculated using 
the Hagen-Poiseuille equation (5) :  

and the pressure at which a pore of a given radius becomes open to flow 
is calculated by using the Laplace-Young (6 )  equation for a right cylindri- 
cal pore: 

(2) 
However, as is commonly known, most modern polymeric membranes 

have an asymmetric pore structure (7). Consequently, a pore size and 
distribution estimate based on the assumption that the membrane pores 
are right cylindrical is likely to be of questionable veracity. In this note 
a technique for analyzing permoporometric data for a few other shapes 
of membrane pore will be outlined and examples will be given to demon- 
strate the erroneous nature of the conclusions that can be reached when 
data obtained with membranes having asymmetric pores is analyzed under 
the assumption of right cylindricity. 

A P b  = 47 COS Bld 

THEORY 

The Laplace-Young equation in its most general form is usually written 
as 

In order to determine A P b  for a specific pore shape, one must first 
obtain an expression for the two principal radii of curvature, rl and r z .  
For an irregular pore shape this is a very daunting task. However, for 
any axis-symmetric pore shape the two radii of curvature are equal, and 
from elementary geometry and trigonometry one can easily show that the 
correct form of the Laplace-Young equation is 

when the interface is displaced from the constricted end of the pore, as 
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PERMOPOROMETRY OF ASYMMETRIC MEMBRANES 2525 

shown in Fig. 1. The angle p can be determined from the equation 

( 5 )  
Tr P = - - tan-'(f'(o)) 2 

where the radius of the pore at a distance x from its opening is given by 
the equation 

R = f(x)  (6) 
The solution to the laminar flow problem for a Newtonian fluid in an 

axis-symmetric channel with diverging walls has been obtained by Blasius 
(8). The solution applies to any axis-symmetric pore with a diverging cross 
section that can be described by an equation of the form 

R = g(E, a ,  6 ,  . . .) (7) 
such that the first two derivatives of the radius expression have an increas- 
ing order of dependence on a small number, E. One practical example of 
such a pore shape equation is 

(8) 
For channels which can be described by such equations, the flow 

R = f exp(Ex) + ( R ,  - f )  exp( --EX) 

through the channel is given by the equation 

Tr 
q = - a  2 

R = R ,  X 

V 

(9) 

FIG. 1 Cross-sectional view of a diverging axis-symmetric pore in an asymmetric mem- 
brane. The inset shows the angle p between the pore wall and the surface of the membrane 

at the mouth of the pore. 
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2526 VAlDYA AND HASELBERGER 

a is the solution to the equation 

where 

and 

I = IOA $ 
The pore shape equation used must satisfy the conditions required of 

it by the Blasius solution to the problem of laminar flow in diverging axis- 
symmetric channels, as described above. However, it must also describe 
a pore shape which is sufficiently realistic and flexible to enable one to 
represent pores in a real asymmetric membrane. Equation (8) is one such 
pore shape. It may be considered to be a synthesis of the two extreme 
pore shapes described by the equations 

R = R, exp(Ex) (13) 
and 

R = R,  cosh(ur) 

As can be seen from Fig. 2, Eq. (13) describes a “bell”-shaped open- 
ing-which would be too unrealistic a shape to use for the description of 
a membrane pore. Equation (14) describes a pore with a very small degree 
of asymmetry. On the other hand, Eq. (8) can be made to describe a whole 
family of pore shapes ranging from the bell-shaped structure of Fig. 2(A) 
to the virtually parallel-sided pore of Fig. 2(B). A further advantage of 
Eq. (8) is that the “f” term in it is constrained to obey the inequality 

R,l2 5 f 5 R, (15) 

This limitation considerably simplifies the parameter search procedure 
to be described in the next section. The search technique requires an 
independent set of permoporometric flow-pressure data for each parame- 
ter in the equation describing the pore shape. An additional data set is 
required to determine the number of pores. Such independent data sets 
can be obtained by using liquid pairs with different interfacial tensions in 
the perrnoporornetric experiment. Evidently these requirements limit the 
utility of this modified permoporometric technique since it would be diffi- 
cult to obtain more than three sets of independent flow-pressure data. 
For a complete analysis of pores described by Eq. (8), three data sets 
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PERMOPOROMETRY OF ASYMMETRIC MEMBRANES 2527 

FIG. 2 Extreme examples of divergent, axis-symmetric pore shapes which meet the Masius 
condition (see text). (A) A bell-shaped exponential pore. (B) A slightly asymmetric hyper- 

bolic cosine pore. 

would be required-one each for the parameters E and f ,  and one further 
data set to determine the number of pores. At first sight it may appear 
that an additional parameter-R, or @-must be solved for since Eq. (4) 
indicates that R, is dependent on the pore angle p. However, it must be 
noted that one would always choose test liquid pairs in which the contact 
angle 0 is relatively small. There is also a severe constraint on the value 
of the pore angle, p. It is reasonable to assume an initial value of d 2  for 
p. With this assumption, one can make an initial estimate to the pore size 
at an experimentally measured pressure A P  by using Eq. (4) in the form 

A more refined estimate to the value of R, can be made at a later stage 
after values of the pore parameters f and E have been obtained. 

COMPUTATIONAL TECHNIQUE 

The computational technique described in this section is suitable for 
pore shapes given by Eq. (8). However, it can easily be adapted to obtain 
parameters for the other two parameter equations. The key to the tech- 
nique is to note that the terms “E” and “ I ”  in Eq. ( 1  I )  are constants 
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2528 VAIDYA AND HASELBERGER 

characteristic of the membrane pore. Consequently, if one can obtain two 
independent values of a, the values of E and Z can be calculated by a 
simple Gaussian elimination method. Evidently, since the E and Z values 
are determined by the values of R,  and R,, both of them will be correct 
if, and only if, the a values used in obtaining them were correct. This 
suggests the following simple algorithm for the analysis of permoporo- 
metric data. 

1. Read in three sets of permoporometric data obtained for the same 
type of membrane but with two different liquid-liquid systems. Hereafter, 
these data sets will be referred to as DSI, DS2, and DS3 respec- 
tively-where DS1 is obtained with the liquid pair with the lowest interfa- 
cial tension, -y, and DS3 for the liquid pair with the highest value of y. 

Use the first data point in DSI to determine the radius, R,, of the 
pores which will be open to flow using Eq. (4)-in the first iteration this 
is done with the assumption p = d 2 .  

From Eq. (4) obtain the opening pressure for pores with the radius 
calculated in Step 2 when the second liquid pair is used. Use DS2 to obtain 
the flow through these pores at the calculated pressure. This will have to 
be done by numerical interpolation if the calculated pressure is not an 
experimental data point. 

Determine the a values for this pore size in the two data sets for 
two different guesses to the number of pores, e.g., 1 and lo6, and at their 
midpoint. Using these three sets of a values, calculate three sets of values 
for E and I by linear elimination. 

2. 

3. 

4. 

5 .  
6 .  

Repeat Steps 2 to 4 but with DS3 used in place of DS2. 
At the end of Step 5 ,  two sets of values for E and Z are available. 

Compare E and Z values from each set at the ends of the pore number 
interval used in Step 4, and reject the end of the interval which gives the 
greatest discrepancy in E and Z. Replace the rejected end point with the 
midpoint of the original pore number range. 

7 .  Repeat Steps 2 to 6 with the new pore number range. If the upper 
and lower limits of this range meet a preset convergence criterion, go to 
Step 8. 

8. At this stage we have the correct values for E and I and a good 
estimate for the number of pores. It is necessary to use these E and I 
values to obtain estimates for the pore parameters f and E. This process 
is simplified by the fact that the value of .f must lie in the interval [R,/2, 
R,]. A bisection method-similar to the one used in the previous part of 
the algorithm to determine the number of pores-can hence be used. Use 
Eq. @)-and the estimated value for R,-to determine the value of E 
when f is set to be equal to the end points of this interval. 
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9. For the two sets o f f  and E values obtained in Step 8, determine 
the value of Z from Eq. (12). Compare the two Z values thus obtained with 
the one obtained in Step 7 .  Reject the end point of the interval for f 
which produces the largest discrepancy between these two values for Z 
and replace it with the midpoint of the interval. 

Return to Step 8 and repeat calculations using the new interval 
for f .  If this interval satisfies a preset convergence criterion, go to Step 
11. 

At this stage we have estimates for the number of pores, the pore 
geometry parameters-f and E--, and the pore radius R, .  This last value 
was obtained with the initial assumption p = n/2. Make an improved 
guess to the value of p using Eq. (6). Use this improved value for p and 
repeat Steps 1 to 10. If the value for p meets a preset convergence crite- 
rion, go to Step 12. 

10. 

11. 

12. Repeat Steps 1 to 11 for all the data points in DS1. 

For the purposes of illustration, a simple bisection method has been used 
in the algorithm described above. In an actual application, a Golden sec- 
tion search (9) should be employed. 

EXAMPLE 

It is instructive to study the results of a conventional permoporometric 
treatment when it is employed to analyze flow-pressure data obtained 
with a membrane with pores whose geometry can be described by Eq. 
(8). A few examples of such analyses are given in Table 1. These analyses 

TABLE 1 
Results of Conventional Perrnoporometric Analysis on a Hypothetical Asymmetric 

Membrane. An E Value of 0.01 m - '  Was Assumed for the Membrane 

Calculated pore population 

-- * - 2  Pore radius Assumed pore f f 
( w ) "  population Rn - f Rn - f R n - f  

- 7  -= 

0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0. I 

225 26 1 254 242 
560 650 63 2 60 1 
680 789 769 730 
700 814 790 753 
660 765 747 709 
440 518 500 475 
160 466 386 287 

The pore sizes obtained under the assumption of right cylindricity are not significantly 
different from the pore sizes assumed for the hypothetical membrane. 
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2530 VAIDYA AND HASELBERGER 

were done by first assuming an approximately Gaussian normal distribu- 
tion of pore sizes in a hypothetical membrane which has pores described 
by Eq. (8). Values for the parameters f and were also assumed, and the 
normalized flow through each pore, a, was calculated using Eqs. 
(10)-(12). This cx value was used in Eq. (9) along with the assumed pore 
number distribution to obtain an estimate of the flow through each 
pore-when it was available for flow. By repeating these calculations at 
the opening pressure for each assumed pore size, a set of flow-pressure 
data was obtained for this hypothetical membrane. The flow-pressure 
data were then analyzed using the conventional procedure as outlined by 
Capanelli et al. (1). 

As can be seen, the discrepancy between the real pore population and 
the predicted one increases with the asymmetry of the pore. There is little 
error in the predicted value of the minimum pore radius due to the weak 
dependence of R,,, on the pore angle +for all realistic values of p.  
However, the conventional treatment always overpredicts the number of 
pores since for the same pore throat diameter the flow through a diverging 
pore will be greater than in the corresponding cylindrical pore. 

NOMENCLATURE 

d 
f 
E 

I 

1 
A P  

p b  

9 
R 
R ,  
Rx 
rI .  r? 
X 
a 
P 

E 

Y 

diameter of right cylindrical pore (m) 
pore geometry parameter for divergent pores (m) 
a composite geometric parameter characteristic of a given size 
of asymmetric membrane pore (m-4) 
a composite geometric parameter characteristic of a given size 
of asymmetric membrane pore (mP3)  
length of right cylindrical pore (m) 
applied pressure (Pa) 
breakthrough pressure, required to move a fluid interface from 
a given pore (Pa) 
flow rate of fluid through a single pore (m'/s) 
pore radius at a distance ?I from the pore mouth (m) 
minimum pore radius at the pore mouth (m) 
maximum pore radius (m) 
principal radii of curvature of fluid interface (m) 
axial distance from the narrow end of the membrane pore (m) 
normalized flow rate through a single diverging pore (m3/s) 
angle between the membrane surface and the tangent drawn to 
the pore wall at the mouth of the pore (") 
pore geometry parameter for divergent pores (m- ') 
interfacial tension at the liquid-liquid interface (N.m) 
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A 
P liquid viscosity (Pa.s) 
e 

length of diverging membrane pore (m) 

angle of contact between membrane pore wall and the displaced 
liquid (") 
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