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TECHNICAL NOTE

A Novel Technique for the Characterization of
Asymmetric Membranes by Permoporometry

A. M. VAIDYA* and N. J. HASELBERGER

DEPARTMENT OF CHEMICAL ENGINEERING

UNIVERSITY OF STRATHCLYDE

JAMES WEIR BUILDING, 75 MONTROSE ST, GLASGOW G1 1XJ, SCOTLAND

ABSTRACT

A modified technique for the characterization of membranes by liquid displace-
ment permoporometry has been described. The modifications allow an estimate
of the shape of a pore in an asymmetric membrane to be made. The erroneous
nature of the conclusions that would be drawn if permoporometric data, obtained
with a membrane with asymmetric pores, is treated under the assumption of right
cylindricity has been demonstrated by means of such an analysis done on a hypo-
thetical asymmetric membrane. While there is little error in the estimation of pore
radii, the pore numbers are grossly overpredicted by a right cylindrical pore model
for the membrane. The extent of this overprediction increases with the asymmetry
of the membrane.

INTRODUCTION

Liquid displacement permoporometry (1) is a well-established tech-
nique for the characterization of porous membranes. The technique, first
used by Bechhold et al. (2), involves the displacement of a liquid wetting
the pores in the membrane by another liquid, immiscible in the former.
The two liquids are chosen so as to have a low interfacial tension (3). The
experimental technique involves the measurement of the flux through the
membrane at incremental pressures. This is quite difficult to do since the
fluxes are of the order of 10~° m?/s and the pressure increments required

* To whom correspondence should be addressed.
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are correspondingly small. Capanelli et al. (4) have outlined a simpler
experimental technique.

In ali the published literature on the characterization of membranes
using this technique, the flow through the pores from which the displace-
ment of the liquid—liquid interface has already occurred is calculated using
the Hagen—Poiseuille equation (5):

AP wd?
9= "7 128g M

and the pressure at which a pore of a given radius becomes open to flow
is calculated by using the Laplace-Young (6) equation for a right cylindri-
cal pore:

APy, = 4v cos 0/d 2)

However, as ts commonly known, most modern polymeric membranes
have an asymmetric pore structure (7). Consequently, a pore size and
distribution estimate based on the assumption that the membrane pores
are right cylindrical is likely to be of questionable veracity. In this note
a technique for analyzing permoporometric data for a few other shapes
of membrane pore will be outlined and examples will be given to demon-
strate the erroneous nature of the conclusions that can be reached when
data obtained with membranes having asymmetric pores is analyzed under
the assumption of right cylindricity.

THEORY

The Laplace~Y oung equation in its most general form is usually written
as

AP, = 2y (% + riz) (3)

In order to determine APy for a specific pore shape, one must first
obtain an expression for the two principal radii of curvature, ry and r;.
For an irregular pore shape this is a very daunting task. However, for
any axis-symmetric pore shape the two radii of curvature are equal, and
from elementary geometry and trigonometry one can easily show that the
correct form of the Laplace—Young equation is

AP, = MI(Q—B—JF—(” 4)

when the interface is displaced from the constricted end of the pore, as
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shown in Fig. 1. The angle B can be determined from the equation
kN

B =75 — tan”'(f'(0) )

where the radius of the pore at a distance x from its opening is given by
the equation

R = f(x) (6)

The solution to the laminar flow problem for a Newtonian fluid in an
axis-symmetric channel with diverging walls has been obtained by Blasius
(8). The solution applies to any axis-symmetric pore with a diverging cross
section that can be described by an equation of the form

R =g, ab,..) )

such that the first two derivatives of the radius expression have an increas-
ing order of dependence on a small number, e. One practical example of
such a pore shape equation is

R = fexplex) + (Rn — f) exp(—ex) 8

For channels which can be described by such equations, the flow
through the channel is given by the equation

q=73o ©)

FIG. 1 Cross-sectional view of a diverging axis-symmetric pore in an asymmetric mem-
brane. The inset shows the angle B between the pore wall and the surface of the membrane
at the mouth of the pore.
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o is the solution to the equation

Eo* + 4pol + AP =0 (10)
where
1 1
E = R R (1)
and
N dx
I = . R (12)

The pore shape equation used must satisfy the conditions required of
it by the Blasius solution to the problem of laminar flow in diverging axis-
symmetric channels, as described above. However, it must also describe
a pore shape which is sufficiently realistic and flexible to enable one to
represent pores in a real asymmetric membrane. Equation (8) is one such
pore shape. It may be considered to be a synthesis of the two extreme
pore shapes described by the equations

R = R, explex) (13)
and
R = R, cosh(ex) (14)

As can be seen from Fig. 2, Eq. (I13) describes a “‘bell’’-shaped open-
ing—which would be too unrealistic a shape to use for the description of
a membrane pore. Equation (14) describes a pore with a very small degree
of asymmetry. On the other hand, Eq. (8) can be made to describe a whole
family of pore shapes ranging from the bell-shaped structure of Fig. 2(A)
to the virtually parallel-sided pore of Fig. 2(B). A further advantage of
Eq. (8) is that the *“f*’ term in it is constrained to obey the inequality

R.2 = f =R, (15)

This limitation considerably simplifies the parameter search procedure
to be described in the next section. The search technique requires an
independent set of permoporometric flow—pressure data for each parame-
ter in the equation describing the pore shape. An additional data set is
required to determine the number of pores. Such independent data sets
can be obtained by using liquid pairs with different interfacial tensions in
the permoporometric experiment. Evidently these requirements limit the
utility of this modified permoporometric technique since it would be diffi-
cult to obtain more than three sets of independent flow—pressure data.
For a complete analysis of pores described by Eq. (8), three data sets
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FIG.2 Extreme examples of divergent, axis-symmetric pore shapes which meet the Blasius

condition (see text). (A) A bell-shaped exponential pore. (B) A slightly asymmetric hyper-
bolic cosine pore.

would be required—one each for the parameters € and f, and one further
data set to determine the number of pores. At first sight it may appear
that an additional parameter—R, or B—must be solved for since Eq. (4)
indicates that R, is dependent on the pore angle B. However, it must be
noted that one would always choose test liquid pairs in which the contact
angle 0 is relatively small. There is also a severe constraint on the value
of the pore angle, B. It is reasonable to assume an initial value of w/2 for
8. With this assumption, one can make an initial estimate to the pore size
at an experimentally measured pressure AP by using Eq. (4) in the form

2
AP, = R—V cos 6 (16)
A more refined estimate to the value of R, can be made at a later stage
after values of the pore parameters f and € have been obtained.

COMPUTATIONAL TECHNIQUE

The computational technique described in this section is suitable for
pore shapes given by Eq. (8). However, it can easily be adapted to obtain
parameters for the other two parameter equations. The key to the tech-
nique is to note that the terms ““E’" and ““I’’ in Eq. (11) are constants
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characteristic of the membrane pore. Consequently, if one can obtain two
independent values of «, the values of E and I can be calculated by a
simple Gaussian elimination method. Evidently, since the £ and I values
are determined by the values of R, and Ry, both of them will be correct
if, and only if, the a values used in obtaining them were correct. This
suggests the following simple algorithm for the analysis of permoporo-
metric data.

1. Read in three sets of permoporometric data obtained for the same
type of membrane but with two different liquid-liquid systems. Hereafter,
these data sets will be referred to as DS1, DS2, and DS3 respec-
tively—where DS1 is obtained with the liquid pair with the lowest interfa-
cial tension, -y, and DS3 for the liquid pair with the highest value of vy.

2. Use the first data point in DS! to determine the radius, R,, of the
pores which will be open to flow using Eq. (4)—in the first iteration this
is done with the assumption B = 7/2.

3. From Eq. (4) obtain the opening pressure for pores with the radius
calculated in Step 2 when the second liquid pair is used. Use DS2 to obtain
the flow through these pores at the calculated pressure. This will have to
be done by numerical interpolation if the calculated pressure is not an
experimental data point.

4. Determine the o values for this pore size in the two data sets for
two different guesses to the number of pores, e.g., 1 and 10°, and at their
midpoint. Using these three sets of a values, calculate three sets of values
for E and I by linear elimination.

5. Repeat Steps 2 to 4 but with DS3 used in place of DS2.

6. At the end of Step 5, two sets of values for E and I are available.
Compare E and I values from each set at the ends of the pore number
interval used in Step 4, and reject the end of the interval which gives the
greatest discrepancy in E and I. Replace the rejected end point with the
midpoint of the original pore number range.

7. Repeat Steps 2 to 6 with the new pore number range. If the upper
and lower limits of this range meet a preset convergence criterion, go to
Step 8.

8. At this stage we have the correct values for £ and / and a good
estimate for the number of pores. It is necessary to use these E and [
values to obtain estimates for the pore parameters f and e. This process
is simplified by the fact that the value of f must lie in the interval [R,/2,
R.]. A bisection method—similar to the one used in the previous part of
the algorithm to determine the number of pores—can hence be used. Use
Eq. (8)—and the estimated value for R,—to determine the value of €
when f is set to be equal to the end points of this interval.
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9. For the two sets of f and e values obtained in Step 8, determine
the value of I from Eq. (12). Compare the two I values thus obtained with
the one obtained in Step 7. Reject the end point of the interval for f
which produces the largest discrepancy between these two values for I
and replace it with the midpoint of the interval.

10. Return to Step 8 and repeat calculations using the new interval
for f. If this interval satisfies a preset convergence criterion, go to Step
11.

I1. At this stage we have estimates for the number of pores, the pore
geometry parameters—f and e—, and the pore radius R,. This last value
was obtained with the initial assumption B = 7/2. Make an improved
guess to the value of § using Eq. (6). Use this improved value for g and
repeat Steps 1 to 10. If the value for B meets a preset convergence crite-
rion, go to Step 12.

12. Repeat Steps 1 to 11 for all the data points in DSI.

For the purposes of illustration, a simple bisection method has been used
in the algorithm described above. In an actual application, a Golden sec-
tion search (9) should be employed.

EXAMPLE

It is instructive to study the results of a conventional permoporometric
treatment when it is employed to analyze flow-pressure data obtained
with a membrane with pores whose geometry can be described by Eq.
(8). A few examples of such analyses are given in Table 1. These analyses

TABLE 1
Results of Conventional Permoporometric Analysis on a Hypothetical Asymmetric
Membrane. An e Value of 0.01 m~! Was Assumed for the Membrane

Calculated pore population

Pore radius Assumed pore f f f

(wm)* population Ri=7 Ri-7 ¢ Ri-7 °
0.7 25 261 254 242
0.6 560 650 632 601
0.5 680 789 769 730
0.4 700 814 790 753
0.3 660 765 747 709
0.2 440 518 500 475
0.1 160 466 386 287

¢ The pore sizes obtained under the assumption of right cylindricity are not significantly
different from the pore sizes assumed for the hypothetical membrane.
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were done by first assuming an approximately Gaussian normal distribu-
tion of pore sizes in a hypothetical membrane which has pores described
by Eq. (8). Values for the parameters f and e were also assumed, and the
normalized flow through each pore, «, was calculated using Egs.
(10)—(12). This o value was used in Eq. (9) along with the assumed pore
number distribution to obtain an estimate of the flow through each
pore—when it was available for flow. By repeating these calculations at
the opening pressure for each assumed pore size, a set of flow—pressure
data was obtained for this hypothetical membrane. The flow-pressure
data were then analyzed using the conventional procedure as outlined by
Capanelli et al. (1).

As can be seen, the discrepancy between the real pore population and
the predicted one increases with the asymmetry of the pore. There is little
error in the predicted value of the minimum pore radius due to the weak
dependence of R, on the pore angle B—for all realistic values of 8.
However, the conventional treatment always overpredicts the number of
pores since for the same pore throat diameter the flow through a diverging
pore will be greater than in the corresponding cylindrical pore.

NOMENCLATURE

d diameter of right cylindrical pore (m)

f pore geometry parameter for divergent pores (m)

E a composite geometric parameter characteristic of a given size
of asymmetric membrane pore (m~*)

1 a composite geometric parameter characteristic of a given size
of asymmetric membrane pore (m~%)

l length of right cylindrical pore (m)

AP applied pressure (Pa)

APy, breakthrough pressure, required to move a fluid interface from
a given pore (Pa)

q flow rate of fluid through a single pore (m¥/s)

R pore radius at a distance x from the pore mouth (m)

R, minimum pore radius at the pore mouth {m)

Ry maximum pore radius (m)

Fi. b principal radii of curvature of fluid interface (m)

X axial distance from the narrow end of the membrane pore (m)

o normalized flow rate through a single diverging pore (m?/s)

B angle between the membrane surface and the tangent drawn to
the pore wall at the mouth of the pore (°)

€ pore geometry parameter for divergent pores (m™!)

interfacial tension at the liquid-liquid interface (N-m)



12:10 25 January 2011

Downl oaded At:

PERMOPOROMETRY OF ASYMMETRIC MEMBRANES 2531

>E >

B

length of diverging membrane pore (m)

liquid viscosity (Pa-s)

angle of contact between membrane pore wall and the displaced
liquid (°)
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